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Summary

During the current reporting period, January 1 to December 31, 1989, general problems
associated with on-board trajectory optimization, propulsion system cycle selection, and with the
synthesis of guidance laws were addressed for ascent to low-Earth-orbit of an air-breathing,
single-stage-to-orbit vehicle. This report follows a previous one entitled "Trajectory Optimization
and Guidance Law Development for National Aerospace Plane Applications” and dated December
1988. The work reported herein builds directly upon the analytical results presented in that
document. A good portion of this work focused on making improvements to the vehicle models
employed. The NASA "Generic Hypersonic Aerodynamic Model Example” and the "Langley
Accelerator” aerodynamic data sets were acquired and implemented. Work pertaining to the
development of purely analytic aerodynamic models also continued at a low level. A generic model
of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and
rocket engine cycles. Provisions were made in the dynamic model for a component of thrust
normal to the flight path. Computational results, which characterize the nonlinear sensitivity of
scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the
engine model. Additional trajectory constraints were also introduced. The constraints now treated
are: maximum dynamic pressure, maximum aerodynamic heating rate per unit area, angle of attack
and lift limits, and limits on acceleration both along and normal to the flight path.

The remainder of the research effort focused, for the most part, on required modifications to the
previously derived algorithm when the model complexity cited above was added. In particular,
analytic switching conditions were derived which, under appropriate assumptions, govern optimal
transition from one propulsion mode to another for two cases: the case in which engine cycle
operations can overlap, and the case in which engine cycle operations are mutually exclusive. The
resulting guidance algorithm was implemented in software and exercised extensively. It was found
that the approximations associated with the assumed time scale separation employed in this work
are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the
very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for
ascent to orbit. Very little mass penalty is induced by the resulting inaccuracies in the trajectory
over this region because it is traversed rapidly. However, the reduced solution climb paths prove to
be unfeasible within this Mach range when subject to the full model dynamics and active trajectory
constraints. These difficulties were successfully overcome by accounting for flight path angle and
flight path angle rate in construction of the flight path over this Mach range. The resulting
algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle
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selection over the entire Mach range from take-off to orbit given a realistic nonlinear vehicle model
and all pertinent trajectory constraints.

The only significant problem area encountered to date relates to the lack of a general theory for
singularly perturbed systems that are.subject to state-variable inequality constraints. Such
constraints are common to a wide class of flight vehicles but have received little attention in the
literature when the dynamic system is singularly perturbed. A study was initiated in this area and it
was found that, when the reduced solution lies on a state-variable inequality constraint boundary,
the boundary layer trajectories are of finite time in the stretched time scale. The possibility of
costate discontinuites at the juncture between constrained and unconstrained arcs makes direct
application of existing theory difficult at best. A transformation technique was identified that
eliminates some of these difficulties, but at the cost of possibly increased system order and the
introduction of singular arcs. Much work remains to be done in this area.

Work on development of simple, efficient algorithms for prediction of vehicle aerodynamic and
propulsive performance have continued during the present phase of the program. Improvements in
modeling of the hypersonic lifting body module have eliminated previous discrepancies between
measured and predicted aerodynamic behavior. Several modes of data entry are now implemented
making assessment of a given vehicle configuration very simple. An interactive program mode has
been devised that makes possible direct and immediate assessment of configuration changes on
selected vehicle performance paramaters. The algorithms developed in this program are of potential
use in applications beyond those originally envisioned.

Four conference papers have now been published which discuss most of the results of this
research effort. A Ph.D. Dissertation that details the entire effort to date was published in
Decemeber of 1989. A full-length paper entitled "Rapid Near-Optimal Trajectory Generation for
Single-Stage-to-Orbit Airbreathing Vehicles” has been submitted for publication in the AIAA
Journal of Guidance, Control and Dynamics and a new paper is now being prepared for the 1990
AIAA GN&C Conference on the issue of state contraints in singularly perturbed systems.
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SECTION 1
Introduction

Emerging technology in many engineering fields, including hypersonic air-breathing
propulsion, computational fluid dynamics, and high temperature materials, may soon make
possible a vehicle configuration that has been the subject of study for over four decades!. This
vehicle concept is commonly referred to as an aerospace plane. Its development, in one version or
another, is being pursued by a number of industrialized nations. The current U.S. concept consists
of a single-stage vehicle propelled, for the most part, by airbreathing engines. Most notable among
the airbreathing cycles to be employed is that of the supersonic combustion ramjet or "scramjet.”
This aircraft is to be fueled by liquid hydrogen and will take-off and land horizontally on
conventional runways. Operational objectives include hypersonic cruise in the upper atmosphere
for long durations and the ability to accelerate to orbital velocity. Potential missions for such a
vehicle include transportation to low-Earth-orbit, intercontinental passenger transportation, and a
wide range of defense missions. This research effort is focused upon the particular mission of
single-stage-to-orbit which promises, by the use of air-breathing hypersonic propulsion and
greatly reduced launch operations, an order of magnitude reduction in the cost of placing payloads
in low Earth orbit 2.3,

Even with the greatly improved fuel efficiency of airbreathing propulsion over current rocket
engine technology, the ability to attain orbit in a single-stage vehicle will be marginal at best*.
Trajectory optimization will play an important role in mission success for this reason. In fact,
because the airbreathing propulsion system characteristics are sensitive to vehicle attitude and
atmospheric conditions, precise trajectory control will be required. State-of-the-art launch vehicle
guidance technology is heavily reliant on pre-mission, ground-based trajectory
generation/optimization. In order to be cost effective, aerospace plane operations will have to
approach those of modermn commercial airlines. Technology dependent upon pre-mission, ground-
based trajectory optimization is inadequate for this task; real-time, on-board trajectory optimization
will be required?.

The state of the art in trajectory optimization for complex nonlinear systems consists of a
number of well developed numerical methods of solution. Unfortunately, these algorithms are
poorly suited for on-board, real-time implementation. They are, in general, computationally
intense, require an initial guess of the solution, and are lacking in global convergence
characteristics. While some success in designing a reliable algorithm to numerically solve a two



point boundary value problem' in an on-board computef has been achieved fdr orbit transfer®, the
diverse mission requirements and complex control structure of a general purpose aerospace plane
will likely require that structured methods for order reduction be employed.

Energy state approximations and singular perturbation methods have been successfully
employed to derive near-analytic trajectory optimization algorithms in the past. Near-optimal
feedback guidance laws have also been obtained. These methods also contribute considerable
insight into the nature of the optimal profiles and their relation to vehicle aerodynamic and
propulsion characteristics. Early studies were devoted to fighter aircraft performance optimization’-
9. However, many of the modeling approximations employed for analysis of subsonic and
supersonic aircraft optimal trajectories are not valid for a vehicle with hypersonic cruise and orbital
capabilities. '

This research report presents an analysis of the problem of fuel-optimal ascent to low-Earth-
orbit of an airbreathing, single-stage-to-orbit vehicle. Section II presents the problem formulation.
A generic multi-mode propulsion system is defined which incorporates turbojet, ramjet, scramjet,
and rocket engines. Inequality constraints on dynamic pressure, aerodynamic heating rate, and
vehicle acceleration are also introduced. In Section III an afgorithm for generating fuel-optimal
climb profiles is derived employing an energy state approximation. This algorithm results from
application of the minimum priﬂciple to a low order dynamic model that includes general functional
dependence on angle of attack and a normal component of thrust. Switching conditions are derived
which, under appropriate assumptions, govern optimal transition from one propulsion mode to
another. The use of bank angle to modulate the magnitude of the vertical component of lift is also
investigated. A nonlinear transformation technique is employed to derive a feedback controller for
tracking the computed trajectory. Section IV provides an overview of the vehicles models
employed in this work. Section V provides a presentation and discussion of representative
numerical results, and Section VT states conclusions drawn from this work. The main body of the
report is followed by two appendices. Appendix A details an initial investigation into the
characteristics of boundary layer systems when the reduced solution lies on a state-variable
inequality constraint boundary. Appendix B details work performed in analytical vehicle model
development.



SECTION 2

General Problem Formulation

Consider atmospheric flight of a point mass over a spherical non-rotating Earth. The equations
governing such flight can be reduced to a four state model as follows,

. VE:-D)
E=s—p— ‘ D
m = —f (r,E,%,0) 2)

* _[Fs +Ljcosc pecosy  Vcosy
e M ®

er =V siny 4)

The perturbation parameter, €, which has been artificially inserted, is nominally one. It is assumed
that the atmosphere is stationary and that the thrust vector lies in the vehicle's plane of symmetry.
In (1), mass specific energy, E, is employed as a state variable in place of velocity, V, where

E=V22-wr (5)

The reference point for zero gravitational potential is taken at a radial distance approaching infinity.
The symbol V is to be taken as

V = [2(E + w112 (6)

everywhere it appears in this analysis. Position and heading dynamics are decoupled from (1-4)

by the assumption of a non-rotating Earth and are not of interest at present.
Drag is assumed to have a conventional parabolic form

D =qsCp, + KL? /gs where q=pViN2 7



The assumed functional dependence for Cp, , the zero lift drag coefficient, and K, the coefficient
of the induced drag component, are:

Cp, = Cp,M) K =KM,) ¢y
Lift is given by
L = gsCL(r,E,0,8¢e) = qsCrLa(0t— 0zL) : )

The lift curve slope, CL,, , and the angle of attack for zero lift, o7y , are assumed to be Mach

number dependent.

A multi-mode propulsion system composed of n different engine types (i.e. cycles) is assumed.
Net thrust is given by

T=[Fc’*+Fs’ 1" (10)
where Fc represents the component of net thrust along the velocity vector and Fg represents the

component of net thrust normal to the velocity vector, i.¢. in the lift direction. These components
are depicted in Figure 1 and given by:

p |

Fc=2anjCOS(a+£Tj)+ Z T; cos (L + €T, ) (1)
j=1 i=p+1 .
p n

Fs= anTjsin(a+eTj)+ 2 T; sin (ot + €T, ) (12)
j=1 i=p+1

Each of the n engine cycles (i.e. turbojet, ramjet, scramjet, rocket, etc.) is controlled by variation
of the fuel flow rate in direct proportion to command. Of the total number of engine types to be
considered, p are assumed to exhibit a linear relation between fuel flow rate and thrust generation,
Each engine of this type shall be controlled by varying its throttle setting, 7;. This assumption is
typically employed for rocket engines. For the remaining n—p engine cycles, the relation between
fuel flow rate and thrust generation is assumed nonlinear. Control of each engine of this type shall
be effected by variation in its fuel equivalence ratio, ¢;. This behavior is typif:al of air-breathing

cycles. The subscripted symbol Ty (k = 1 to n) in (1,1) and (12) represents the net thrust generated



by any number of independent engines employing a particular cycle k. The symbol €1, denotes the

angle between T and the body longitudinal axis (see Figure 1). Note that in general,

T; = Tj(r,E,oc) U [0,1] j=1ltop (13)
Ti=T, CEgu) @€ [0,1] i=p+lion (14)
er, =1, (1E0) k=1ton (15)

The total fuel flow rate, f, is given by

P n
f= 20 GLEWTRE0) + 2 ifme (LEQ) (16)
j=1 i=p+1

where c; represents the thrust specific fuel consumption for engine type j and fmax; represents the

product of thrust specific fuel consumption and thrust at a stoichiometric fuel-to-air ratio for engine
type i. For convenience all of the engine throttle controls are collected into a single vector as
follows,

KT = [nly n2, (AL ] npy (pp+la eee (Pn] (17)

The control variables are angle of attack, ¢, bank angle, o, the fuel equivalence ratios, @, for
engine types 1 through n, and engine throttle settings, nj, for engine types n+1 through p. The
objective is to minimize the fuel consumed in gaining energy, with the performance index given
by,

J=—m(ts) (18)
The final time, t; , is free. Minimization of (18) is to be carried out subject to maximum dynamic
pressure and maximum aerodynamic heating rate inequality constraints and acceleration limits

defined by

Ci(,E)= q—Qmax 0 (19)



C;(r,E,0) =Q— Qnax £0 (20)
C3(r,E,m, &, ) =N — Nymax £ 0 (1)

C4 (r, E’ m, O, TC) = N2 — N2max <0 (22)

The symbols n; and nj represent the accelerations in g's along and normal to the velocity vector

(i.e. in the lift direction), respectively.



SECTION 3

Singular Perturbation Analysis

3.1 Reduced Solution.

Lift as a Control. We first consider a simplified problem in which flight is constrained to a
vertical plane, the thrust vector is aligned with the velocity vector, and thrust production is
assumed independent of vehicle angle of attack:

c=0, Fs =0, Fc=T (23)

Furthermore, we consider only that portion of the trajectory in the hypersonic regime. In this
regime we need only consider a dual-mode propulsion system (i.e. n = 2). The system consists of
a bank of scramjet engine modules assumed to operate continuously and a rocket engine that can be
throttled as desired. The constraint (21), which can lead to the requirement for intermediate values
of throttle setting, will be ignored. In this simplified setting the total fuel flow rate and net thrust
can be represented as

T=T@E)y+nT (@ ; n e [01] 24)
f=cyr.E) T, +Mnc(r) T, 25)

where thrust specific fuel consumption is represented by c; for the scramjet and c, for the rocket.

Under these assumptions the governing equations of motion can be written as,

. _ V(T-D)

E=—F— (26)

m = —fTEn) 27)

- _ L pcosy Vcosy

EY = " 5 + = 28)
Vr

er = Vsiny . (29)



The control variables are now rocket engine throttle, 11, and vehicle lift, L. The objective remains

to minimize the fuel consumed in gaining energy.

Setting € = 0 in (26-29) reduces the order of the dynamic system to two and results in what is
conventionally referred to as the energy state approximation. That is, altitude and fli ght path angle
dynamics are assumed fast in comparison to energy and mass dynamics, and altitude now takes on
the role of a control variable®. The differential equations (28) and (29) are reduced to algebraic
equations which yield the following relations:

Yo=0 (30)
L, = m{(W/r2) — (V¥/1)] (1)

The subscript zero denotes reduced solution values and is omitted below where not deemed
necessary for clarity. The reduced solution Hamiltonian is given by

Ho = Ag E + A t + constraints = 0 (32)
where .

Am () =-1.0 (33)

Satisfaction of the minimum principle with respect to altitude, h, is equivalent to the following
operation (see Appendix B of reference 10),

h,* = arg max " [V(T - D)/f] (34)
E = constant
T>D q < gmax
n=n*  Q<Qmax

Consideration of the constraints (19, 20) simply limits the search space over which the
maximization of (34) takes place. The superscript asterisk denotes an optimal value of control.
This operation yields an optimal altitude program as a function of vehicle energy and mass. Note
that 1| appears linearly in the Hamiltonian resulting in a bang-bang control solution for rocket
throttle setting. A switching condition, S, results from the evaluation of 0Ho/0m and is given by,

S = Ap(V/m) — Apcy ‘ (35)



Using (32) to eliminate Ag in (35) and taking into account the sign of A" yields the following
analytic switching condition:

n=0 if [(c-cdlc]Ts >D
(36)
n=1 if [(¢-cdlc]Ts <D

Intermediate values of rocket throttle setting are not optimal. This fact is revealed by examination

of the matrix Hy,, which is required to be at least positive semidefinite along an optimizing singular
arc. For convenience, V, rather than h is taken as the control-like variable so that ulT =[ VN1 The '

determinant of Hy,, which is symmetric, must be greater than or equal to zero for positive
semidefiniteness. However, it can be shown that

detHy, =~ (Hyq |’ (37)

which is negative for Hyy # 0, which is generally the case.

It can happen that the velocity set is not convex in a region of interest, and, in the absence of
convexity, one can not guarantee that an optimal control exists. Thus the possibility of a chattering
control solution should be examined. Conclusions regarding this matter are model dependent and
are discussed in reference 16. It is sufficient to say here that no chattering solutions for rocket
throttle setting were found for the vehicle models examined.

The reduced solution costates are determined as!2:

Ar = 0 Am, = - m(t)/m (38)

[s)

Mo = AE, [2KVZLo/(qs)] AE, = Am, (fm/[V(T-D)]} (39)

+ The "influence function", Ay, represents the variation in the performance index, J, with
respect to mass!l. Since J = — m(tg), A, cannot change sign (i.e. it is not possible for a reduction

in vehicle mass as fuel is expended along the climb path to increase the final mass of the vehicle).



Angle of Attack as a Control.Consider now the full model complexity formulated in Section
Il with the exception that flight remains constrained to a vertical plane. That is, consider flight over
the entire Mach range, including the subsonic and supersonic regimes. Assume a multi-mode
propulsion system consisting of turbojet, ramjet, scramjet, and rocket cycles (i.e. n = 4). Allow for
a component of net thrust normal to the velocity vector and consider the possibility that the
performance of one or more of the air-breathing engine cycles is dependent on vehicle angle of
attack. Consider also the constraint on axial acceleration given by (21). The method of solution
proceeds as before.

Setting £ = 0 in (1-4) reduces the differential equations (3) and (4) to algebraic relations:
Yo=0 (40)
L, =m(u/r2 - V2/r) - Fs 41

The control 0 is eliminated via (41). That is, given values of r and E, o, is iteratively determined
using (41) while enforcing trim ghrough elevon deflection, 8. More concisely,

0,(T,E) = {0ty: L(r,E,,8¢) — Lo(r.E,m,0) = 0} (42)

The reduced solution Hamiltonian is again given by (32). But since drag, given by (7), is
dependent on L2, which in turn depends on engine controls through Fs, as given in (12), the ¢;
and the m; both enter nonlinearly in the Hamiltonian. Satisfaction of the minimum principle with
respect to h and 7 is equivalent to the following operation,

ho*, " = arg max | _ [V(Fc - D)/ 43)
E =constant Fc>D

q < gmax Q< Qmax
n] £Nimax N2 S N2max

This operation yields both an optimal altitude program as a function of vehicle energy and mass
and the corresponding optimal engine controls.

If we neglect the dependence of reduced solution drag on the sine component of net thrust, Fs,
then the 1; enter linearly in H,. In such case we have bang-bang solutions for the N; with possible

10



singular arcs along which intermediate throttle settings may be optimal. The switching functions
are determined as before from dHo/om;,

S; = [f(r) cos(a + ETj)/(Fc(n) -D)] —¢; j=1l4ntop 44)
Throttle settings are then governed by the following relations:

Nj=Nmin if S;<0 .
T singular if S; = 0 for finite time (45)
MNj=Nmax i  §>0

The S; are dependent on the M, k # j. Thus an iterative scheme is required to arrive at the optimal

combination of throttle settings if j > 1.

Thus far in the analysis it has been assumed that each engine cycle can be independently
controlled. Since much of the captured mass flow and some or all of the engine hardware will be
shared by the various engine cycles employed, it is perhaps more useful to consider operation of
the various air-breathing cycles as mutually exclusive. In reality, dual combustion over a finite
range of Mach number will be required to smoothly transition from subsonic to supersonic
combustion!3. One can view the case of mutually exclusive engine cycles as a problem in which
the system equations are discontinuous at cycle transition points along the trajectory. Following the
terminology of reference 11, suppose that one set of system equations,

x=f® xut) - (46)
applies for t < t;, where t, is free, and another set of system equations applies for t > t;, namely,
x=f@ (x,u,) 47)

Here x and u denote general state and control vectors, respectively. It is necessary for optimality
that
HD (t;=) = HD (t1+) (48)

The condition (48) can be used to determine the optimal point of transition from one set of system
equations to another. In this case f M and £ @ differ only by the thrust produced by the particular
engine cycle being employed and by the associated difference in fuel consumption. Satisfaction of

11



(48) can be reduced to the following equality where the condition H, = O has been employed to
eliminate costate dependence

(T; cos(a + e1y) — D)/eiT; = (Tj cos(a + 1)) — D)/c|T; (49)

This result is, in fact, obvious from examination of (43). That is to say, points at which a change
in engine cycle can occur require that the function to be maximized be equal for either choice of the
propulsion cycle. When the functional evaluations are not equivalent, one or the other is greater
and dictates the optimal choice of cycle.

Bank Angle as a Control. It is reasonable to assume that the performance of the proposed
scramjet engines will be sensitive to vehicle angle of attack. Furthermore, it is quite likely that
thrust production will depend on angle of attack in a nonlinear way. Given that this is true, any
particular engine installation will exhibit an angle of attack for which engine performance is best.
This angle of attack for best engine performance, call it the design angle of attack, may in turn vary
with Mach number!4. If such nonlinear behavior is assumed and the optimal flight path is

constructed using (43), one finds that, since fuel optimization is very sensitive to engine
| performance, the optimal trajectory tends to remain on a contour along which the design angle of
attack is maintained. It can happen, however, that overall performance is improved if the design
angle of attack is maintained while flying at lower altitudes, and hence at higher values of dynamic
pressure. Of course, maintaining the design angle of attack at a higher dynamic pressure generates
additional lift which causes the vehicle to immediately climb above the desired flight path. Thus, in
order to fly along the optimal path, the extra lift associated with maintaining the design angle of
attack must be "dumped." One procedure for accomplishing this task is to roll back and forth in
such a way that, on average, the component of lift in the vertical direction is reduced to that
required to maintain the optimal climb rate. It may in fact be more practical to appropriately offset
the initial vehicle heading and to then execute a single coordinated turn that accomplishes the same
objective. With bank angle thus introduced as an additional control, satisfaction of the minimum
principle with respect to h, , and o is equivalent to the following operation,

ho®, 7*, &to” =arg max [V(Fc —D)/f] _ (50)
E = constant Fc>D

q < gmax Q< Qmax
n] €njmax N2 5 N2max
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where bank angle, o, is determined so that
Lcoso=L, &)

3.2 Boundary Layer Analysis.

The unconstrained boundary layer solution associated with (1-4) is obtained by introducing
the time transformation 1 = t/¢ and again setting € = 0. That is, energy and mass are held constant
while altitude and flight path angle dynamics are examined on a stretched time scale. The resulting
necessary conditions for optimality yield an optimal feedback guidance law for lift control which
depends on the unknown costate Ay (see Section 5.2.2 of reference 10). In the absence of a state
inequality constraint such as (19), a suitable approximation to Ay can be obtained by linearizing the
boundary layer necessary conditions about the reduced solution1%15, However, this procedure is
not applicable when the reduced solution lies on a state constraint boundary. This problem is
discussed in detail in Appendix A. The boundary layer control solutions for engine throttle settings
are similar to those of the reduced solution. The 1; enter the Hamiltonian linearly, but the
switching conditions that govern their behavior are also dependent on the unknown costate Ay.
This dependence drops out of the switching conditions if the sine component of thrust, Fs, is
neglected. ’

Feedback Linearization - Lift as a Control. As an alternative approach to handling the
control of altitude and flight path dynamics, a nonlinear transformation technique is employed as
follows!0. Consider the boundary layer altitude and flight path angle dynamics given in (32) and
(33) on a transformed time scale T = t/e. Note that we have system equations in block triangular

form. To proceed we take successive total time derivatives of r until explicit dependence on the
control appears. The prime notation denotes differentiation with respect to 1.

" = (Lcosy)/m + (V2 cos2y)/r — (u/r2) (46)
The control, L, appears in the second time derivative and we define U, the pseudo control, as

U=r1" (47)

It is desired that U be determined as follows

13



U=K, [ro=1) +Kqf, 1) . (@8)

where 1, denotes the reduced solution radius at the current energy level and the time derivative of
r, denotes the climb rate required to stay on the reduced solution as energy is gained. This climb
rate can be estimated by defining an appropriate increment in energy, evaluating the reduced
solution at this higher energy level, and then estimating the required climb rate using a forwards
difference.

The inverse transformation is defined by solving for L in (47) using (46) and (48),
L = {U + (Wr?) - [(V¥r)cos?y}} (m/cosY) (49)

This lift control solution is constrained directly by (21). Note that as r and y approach their
reduced solution values, (49) approaches the reduced solution value of lift given by (35). A block
diagram depicting the conceptual implementation of the nonlinear transformation technique to yield
the controller defined by (49) is presented in references 10, 15 and 16. The corresponding closed
loop transfer function is

G(s) = (Kas + Kp/(s2 + Kas +Kp) (50)

where the gains Kp and K for the second order system can be written in terms of the damping
ratio, {, and natural frequency, @y, as

Kp = 02 Kq = 2{0n (51)
The performance of this controller can be dictated by selecting the values of Kp and Kqto yield the

desired dynamic response. This lift control solution applies equally well to the unconstrained or the
inequality constrained case.

Feedback Linearization - Angle of Attack as a Control. Direct extension of the lift
control solution presented above to include the angle of attack effects included in (1-4) results in
the following feedback control law,
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v cos? \
a={a|u+L - v)_m —(FS+L)=OJ 63)

- T |cosy

The pseudo-control, U, is defined as before where again K, proportional gain, and Ky, rate gain,
are selected to yield the desired controller performance. Optimal lift, which is directly constrained

by (21), is then determined by,

L* = gsCy, (0* — az) (64)
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SECTION 4
Vehicle Models

Four different vehicle models were employed to generate the numerical results presented in the
next section. The first, referred to as Model 1, is based on a hypersonic research vehicle concept
studied by NASA in the 1970's and is powered by a combination of scramjet and rocket
propulsion!0. This model is useful only in the hypersonic regime. Models 2 and 3 are based on a
"Generic Hypersonic Aerodynamic Model Example," or GHAME, developed more recently by
NASA!7. A nominal configuration of 233.4 feet total length and 300,000 pounds gross take-off
weight was assumed. The trimmed aerodynamic characteristics were taken directly from the
GHAME documentation. For Model 2 the largely empirical GHAME I aerodynamic data set was
employed. For Model 3 the numerically generated GHAME II aerodynamic data set was employed.
Both sets extend from take-off to orbital velocities. Thrust for both Models 2 and 3 is provided by
a multi-mode propulsion system composed of turbojet, ramjet, scramjet, and rocket engines. The
airbreathing propulsive characteristics for this model were adopted from reference 18. A rocket,
sized for orbital insertion (roughly 15,000 1bs. of thrust in vacuum), is assumed available over the
entire Mach range!0. This system corresponds to the case p = n = 4 in (11), (12), and (16). Asa
result, the switching conditions given by (45) can be used to determine all of the cycle transition
points. Figure 2 presents the adopted variation in fuel specific impulse with Mach number for the
various engine cycles. The various engines where sized by trial and error and do not represent an
optimal configuration. The generation of scramjet thrust due to mass ejection when operating above
a stoichiometric fuel-to-air ratio is not modeled. Thrust induced pitching moments, which can be
significant!6, were not considered when trimming the aircraft. A fourth model was constructed by
combining an aerodynamic data set provided by the NASA Langley Research Center (referred to as
the "Langley Accelerator") with the propulsive data described above. Additional details regarding
these models are available in references 10 and 19.

A simple model for convective heating rate per unit area, Q, was adopted from reference 20,

Q= (4.919 E-08) p0> V30 (52)
Equation (52) gives Q in Watts/cm? given density in kg/m? and velocity in m/sec and corresponds
to equilibrium conditions on the surface of a sphere or wing leading edge 10 cm in radius and
cooled by reradiation alone. For reference, a contour of Q = 800 in the altitude-velocity plane
corresponds roughly to a contour along which skin temperature remains at approximately 2000° F
three feet aft of the leading edge assuming laminar flow?2!.
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SECTION 35

Numerical Results

Reduced solution trajectories were generated by carrying out the maximization process
indicated in (34), (43), and (50) over the energy range from take-off to orbit. Numerous results are
available in reference 19. Only a few representative plots are presented here. Figure 3 depicts
reduced solution trajectories for Model 1 in the altitude/velocity plane. Dynamic pressure is limited
to 2000 psf while maximum allowable heating rate is varied. The trajectories follow the dynamic
pressure constraint boundary until the specified contour of maximum heating rate is encountered.
The path then follows the constant heating rate contour until reaching the trajectory for which no
heating rate constraint was enforced. At this point the heating constraint becomes inactive and the
trajectory rejoins the unconstrained climb path. The mechanism causing the altitude discontinuity at
a velocity of 22,000 ft./sec. is similar to that which has been noted in the transonic region for
supersonic fighter aircraft!. Included in Figure 3 is the rocket switching surface, i.e. the contour
along which the switching function (39) remains zero. At altitudes below this contour the optimal
rocket throttle setting is zero whereas above the contour the optimal throttle setting is one. The
performance penalty paid in enforcing the heating constraint is presented in Figure 3 as time
required and percent gross weight consumed to achieve an orbital energy level. This performance
penalty must be weighed against the complications of using active cooling, the weight of heat
shielding, and various other factors in the vehicle design process.

Figure 4 presents the reduced solution climb path in the altitude-velocity plane for Vehicle
Model 4. The dynamic pressure constraint is again enforced, an acrodynamic heating constraint is
not, and a limit on axial acceleration is introduced. The trajectories vary predictably as the
magnitude of the acceleration constraint is changed. Some throttling of the engines is employed but
in general the vehicle prefers instead to climb to reduce the excess thrust available. Note that the
altitude discontinuity present in Figure 3 does not occur for this vehicle, but is in fact implicit in
matching a terminal altitude condition at orbital velocity. The horizontal bars at the top of the figure
indicate the velocity range over which the operation of each engine cycle was deemed optimal,
including regions of cycle overlap. The rocket operation was not optimal during atmospheric flight
for this case.

Computational investigations of the sensitivity of scramjet performance to changes in angle of

attack predict highly nonlinear behavior!4. Figure 5 presents a scramjet thrust scaling factor
employed to model this effect. This figure is based on a liberal interpretation of the computational
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results prescnted in reference 14. This curve is shifted with respect to the horizontal axis in order
to represent inlet designs which favor maximum engine performance at an angle of attack other
than zero.

Figure 6 presents variations in the dynamic pressure constrained reduced solution trajectories
for Model 3 when thrust variation with angle of attack for both the ramjets and scramjets, as
depicted in Figure 5, is included. The angle of attack for best engine performance is varied over the
range from 0.5 to 3.0 degrees. When only scramjets are operating, the vehicle tends to prefer a
path along which the "design" angle of attack is strictly maintained. The performance penalty paid
for a change in the design angle of attack is modest however, since in this Mach region, the
acceleration capability of the vehicle is high. When the thrust scaling factor of Figure 5 is assumed
Mach dependent in accordance with the results of reference 14, a much greater variation in the
trajectory is experienced!®.

The peak in the trajectories at approximately 3000 ft./sec. in Figure 6 is due to turbojet shut
down. This peak is significantly reduced when the turbojet inlet area is increased, indicating that
the climb away from the dynamic pressure constraint boundary is due to the decreasing level of
thrust available from the turbojet as the Mach number increases. With an increase in altitude comes
" a reduction in vehicle drag, but the turbojet switching surface is encountered at an altitude of
approximately 75,000 ft. and the turbojet shut down. The SCRAMIJET almost immediately
switches on, and with a much greater magnitude of thrust, can sufficiently overcome vehicle drag,
even at a higher dynamic pressure. Thus the trajectory returns to the dynamic pressure constraint
boundary. Note that the ramjet is turned on at a very low Mach number (i.e. M = 0.81) even
though it is extremely inefficient in this speed range (see Figure 2). This behavior has been noted
by past researchers and is due to the presence of a "pinch point” (i.e. a point of minimum thrust
minus drag) in the transonic region. The size of the ramjet was selected without regard to its
weight. However, optimization of the vehicle configuration must take into account the mass of
each engine and the mass of the required engine cowling. Results obtained indicate that the optimal
trajectory for such an optimized configuration may prefer the use of rocket (rather than ramjet)
thrust to augment turbojet thrust at the transonic pinch point.

As stated above, cycle operations are represented in Figure 6 by horizontal bars. The transition
points were very nearly the same for thrust independent of or dependent on angle of attack. The
overlap in air-breathing cycles is desirable to provide smooth cycle transitions. For Model 3,
turbojet sizing requires about 25 sq. ft. of inlet area, whereas the total number of ramjet modules
selected require 200 sq. ft. of inlet area. Thus it should be possible to start the majority of the
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ramjet engines in a sequence that avoids excessive acceleraﬁons while maintaining turbojet thrust.
Once the velocity for turbojet shut-down is reached, turbojet airflow can be diverted to the
remaining ramjet modules. The number of required scramjet modules is likewise larger than the
number of required ramjet modules, and a similar argument for cycle overlap can be made. Of
course, the actual system will no doubt share much of the engine hardware amongst the various
cycles employed in addition to sharing the captured mass flow. Thus the actual optimization of

engine transitions will be more complex.

Modulation of the vertical component of lift via bank angle variation was also evaluated for
Model 3. Carrying out the maximization process indicated in (50) alters the trajectories presented in
Figure 6 only slightly. The changes correspond to those portions of the trajectory where oo <
Odesign. As such, only a very modest gain in performance was achieved. However, if design
constraints force the scramjet design angle of attack to differ significantly from the angle of attack
for zero lift, much greater savings can be obtained.

Figure 7 depicts the reduced solution trajectory for Vehicle Model 2 in the altitude-velocity
plane. A maximum allowable dynamic pressure of 2000 psf is the only constraint enforced. The
dashed line labeled 1 represents the fuel-optimal climb path when scramjet performance is assumed
independent of vehicle angle of attack. The percent of take-off gross weight consumed in attaining
orbital energy is 61. The solid line label 2 represents the fuel-optimal climb path when scramjet
performance is assumed to vary with angle of attack according to Figure 5, with optimum engine
performance assumed to occur at an angle of attack of 3 degrees across the Mach range. In this
case the trajectory tends to remain on the dynamic pressure constraint boundary for the majority of
the flight. The percent of take-off gross weight consumed in attaining orbital energy in this case is
68.2. The weight penalty of 7.2 percent of the take-off gross weight most likely exceeds the
payload capability of the vehicle. This comparison indicates the critical need to accurately model
the many interactions present among disciplines.

Figure 8 depicts the altitude time history for simulated flight of Model 3 using the lift control
law derived via feedback linearization to track the corresponding reduced solution. The ramjet
cycle was eliminated and the trajectory is subjected to the following constraints: dynamic pressure
< 2000 psf, reference heating rate < 400 Watts/cm?, and axial acceleration < 3.0 g's. In general
this vehicle preferred to climb in order to satisfy an axial acceleration limit rather than to throttle
back the engines. The rapid climb at roughly 400 seconds is due to scramjet turn-on and this
preferred behavior. The large overshoot just before 500 seconds is due to the inability of the
vehicle to pull down as the altitude for which ny < 3 at full throttle is approached. This overshoot
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can be reduced sorﬁewhat by careful gain scheduling and having the controller look ahead in
energy. However, the requirement to fine tune the controller for each trajectory generated is not
desirable for the intended applications of this algorithm. The problem has less to do with the
controller than with the generation of the trajectory itself.

Over the vast majority of the trajectory the flight path angle is small and the flight path angle rate
very modest so that (41) provides a good approximation to the actual lift required to follow the
flight trajectory. However, when the scramjet is initially turned on at a relatively high value of
dynamic pressure, the energy rate of the vehicle is greatly increased. The necessity of
simultaneously climbing to avoid violating the dynamic pressure constraint boundary results in a
large flight path angle rate. The time scale separation assumed in (1-4) is simply not appropriate
over this small portion of the trajectory. A simple way to overcome this difficulty consists of
estimating the flight path angle and time interval between energy levels, combining them to form an
estimate of the flight path angle rate, and then inverting relation (3) to obtain the required lift. By
restricting the accelerations normal to the flight path when constructing the reduced solution in this
region, a feasible trajectory can always be obtained.

Figure 9 depicts the reduced solution climb path for Modelv3 again with a maximum dynamic
pressure of 2000 psf, a maximum aerodynamic heating rate of 400 Watts/cm2, but with a
maximum axial acceleration of 'lg to amplify the problem (y = 0 in the lift calculations). Also
depicted is the modified trajectory when the method described above is implemented (Y and dy/de =
0). The results in the altitude/velocity plane are quite dramatic over the speed range from 3,000 to
12,000 ft./sec. The near vertical altitude transition at a velocity of approximately 3,000 ft./sec. is
eliminated, as is the dive that followed. The arc which follows in the velocity range from 5,000 to
13,000 ft./sec. corresponds to the region over which the axial acceleration limit is active. Less
altitude change is commanded in this region; more throttle is used to reduce the axial acceleration
instead. The remainder of the trajectory, the same for either case, constitutes flight along the
heating constraint boundary. Despite the significant change in trajectory, only 200 additional
pounds of fuel are consumed and the difference in time of flight is only about 60 seconds. These
small differences are due to the fact that the velocity interval from 3,000 to 12,000 ft./sec. is
traversed very rapidly in time, corresponding to only a small fraction of the total time of flight.

20



wesSey(] JUSWOA Pue 010 [eiled

[EIUOZUIOH [eJ0]

1 23y

IS T, 19N

21



"y ydnoryp ¢
S[OPOJA S[PIYIA O3 I[qR[IeAE SI[0AD uoisindoid snowrea 9yl J0J JIGUINU YIBIA SNSIIA asynduut oryroads [ang

L2qunpN Yo
0t ¢C 0c Sl o1 S oo
e 1920y
//
N,
s N/
plueng
™~ 11 000z
NN
AN !
/ /£ /\ 0008
\
ylwmey

1sloqan g~

000S

7 a8y

(23s) asyndwy nfidadg jan g

.22



0000t

"pauIeA SI (;UUD/SIIBAL UT UMOYS)
Jurensu0d 91kl Juneay orueuApoIoR WnWIIXeW Y} SB | IqunN [9SpON 9[01Y9A JOJ UOTINJOS PINPIY

(23s/1f) £119012 A
00002 00001

3

T
SPU033s uj uaA[d auiy g, pawINsSuo) JY313 A SS0I0 JUIIJ - IMOd

eymg SuigNmsg
Y0y

TSEE = dWI L ‘0"9L = DA D ‘00T S ey Suneay - v
LSTT =dULL ‘TH9 = DM D ‘00v S ey Suneay - ¢

SPST = W], ‘€19 = DMDJ ‘008 S 318y Bunedy -
TIH] = 2wl ‘0'19 = DA D Iurensuo)) ey Sunea oN - |

m

¢ am3ng

0
000001

-

u.

b

S

3)

S
00000C

00000¢

23



000S¢

"UMOYS ST JUTENSUOD

UOTIBIQ[I00. [BIXE Y} JO Ipmiudewl Syl UL UONRLIEA ‘f JOQUINN [IPOJA S[OIYIA JOJ UOUN[OS PadnpAy $ a3y
(2as/1f) 119013 A
0000T 000<1 00001 000¢S 0
i i 3 ' O
[/
$pUODIS UL WL feul - L4 \\\
- pawnsuoD) 1YB1a 0 SSOLD U0 - DMO \
8IP1 = L4 ‘9°0S = DMOd w301 - b y,
1 0121 = LA ‘6’6 = DMODd nun 3 ¢°7-¢ 0000S
TLIT = LA ‘L'6p = DM D nui| wc.m -7 §
L P11 = 1496 = DMDd Nug BoN - | I
A
M 000001
>
lllll M
Pt 0000ST &
,
[+
@
00000T
a 19f0oqiny m—{ 00005T
- ] ,—Lm—.—)_d;—nvwi
Plwey m—
00000€

24



Y4

"Yoene Jo S[3ue IMm ISNIY) 19[IIRIDS UI UODEBLIBA PIWINSSY

0c

Sl

(s22.482p) yoony Jo a3uy

01

S

¢ am3Ly

o1-
00

0

14Y)

90

80

01

(4!

10191, 3|D2S JSnay |

25



"PaLIeA ST Yorlle JO 9[3ue uSisap y) se
uMOYS SI JoeNie JO 9[FUE YIm UOTIBLIRA ISTLIY] JO 1991J9 9Y) ‘¢ JIqUINN] [SPOJA] S[OTYIA 0] UONNOS PIdNPay

0

(0as/1f) &1100127
000ST 0000T 00051 00001 0005
w M T m T w .
SPUOdAs Ul SWIL], [eUl] - 1
- pawmsuo)) W313p) SSOLD) WU - DMDJ \
LETE = LA ‘6°€L = DMDd 592139p §'0 =~ 70 /M Inq T 5B utes -

| V/N = LI ‘V/N = DMDd s9a8ap g1 ="

€7LE = LA ‘TEL=IMDd
] :529439p ("€ JO YIENE Jo I Bue USSP JULISUOD B YNM p 2an31

0 /M INq T Se dweS - ¢

a2d yoepe jo 3jSue yum Liea ysnay g, LA VEDS pue pfuey - 7
|| €87€ = L4 ‘0°€L = DM D 1dene jo s3ue jo yuspuadapul Jsnay, - | L.

-
-
-
o

'

\.\”w.s.»
. s s ..v.\«\\ N\\
..... ASd000T=b" . ‘w\n\
4
\\ a 3PfoqIn |, m-—
{ LACAIVE)S M —
 — 1200 l lwey m—

9 am31g

0
0000S
000001

2
0000ST &

R

S
000002
0000SC

00000¢

26



"UMOYS SI JOBNNE JO S[3Uk YIIM UOTTBLIEA ISTLIY) JO 109133 Y1 {7 JOQUINN [SPOJA] I[IIY2A JOJ UOTIN[OS PIoNpIY L am3r]

(2as/1f) Anooja A
0000¢ 000¢T 00001 000s 0
i ] i i i . 0
SPU0dAs UL JuIL, L] - 14
- powmsuo)) IYF1ap SSOID 1WA - DIMDA
8$8C1 = 14 ‘T'89 = OMDd v
.| :s92489p (g Jo YoeneE Jo 31Bue uSisap JuLISUOD € YIm LE°¢ Ty 2 0000¢
13d yoeype jo Sue yum Lxea snay g, LA VIDS pue jafwey - 7 \Q
| 7991 = L4 ‘0°19 = DMDd ¥oeNe jo ajSue Jo yuapuadaput ssnay, - | et
1 Py \A‘ .ﬂ
nan Pd 00000
opnensnr T —— T T T
——  4Sd 0007 = b - i .S
- =
0000sT §
| &
S
00000¢
m 19foqun mm— 0000ST
LIACTALY UD'S et s S
l 3ol U] P
00000¢

27



00s¢T

10151y QW SpMINTE ‘f [SPOIN J0J UOUNOS papny g ANILg

00ST

(03s) aunJ

0001

00s

0000¢
000001 W
&
)
' =
0000¢T
00000T

00005T

28



or3ue yed 1Sy pue s[Sue yred 131y usym K10193(en oy Jo uostredwod f [POJA JOJ UONN[OS PIONPIY
(03s/1f) Anaoja A

00057

“papnjout 10u are A3y} uaym K10109fen 9y1 YIIM 1] JO UOKE[NO[ED SY) UL PIPNOUT AIE el

0000¢

000ST

00001

0008

P

-
am
.-
lllllll
-
o
Y el

dSd 0007 =b

suonenafe) Y ul 0137 A3uy Wed 3y
suopjenafe) Yry ut osezuoN H3uy Yed wang

6 2m3ry
0
0000S
000001 o,
=
Hu%
S
&
0000sT =
000002

0000¢¢

29



SECTION 6

Conclusions and Recommendations

6.1 Conclusions

This research effort has demonstrated the utility of singular perturbation methods in the study of
single-stage-to-orbit airbreathing vehicles and, in particular, in the derivation of efficient algorithms
for ascent trajectory optimization and optimization of engine cycle transitions. The analysis extends
over the entire Mach range from take-off to orbit and accomodates a realistic nonlinear vehicle
model and all pertinent trajectory constraints. A number of important modeling and analysis issues
not treated in the early stages of this effort were identified and addressed during this reporting
period. Reasonable assumptions regarding propulsion system characteristics were introduced that
allow the optimal engine cycle transition points to be determined as a function of state using a
simple iterative test. These switching conditions lead to significant computational savings during
the optimization process. Functional dependence of scramjet thrust on vehicle angle of attack was
shown to have a major impact on the nature of fuel-optimal ascent trajectories. Also, depending on
the actual vehicle configuration and the characteristics of the engine inlets, roll maneuvers used to
modulate the vertical component of lift were shown to sometimes improve the index of
performance during ascent. Over thosé¢ limited regions of flight where the energy state
approximation was found to be poor, simple lift corrections that account for non zero flight path
angle and flight path angle rate were introduced that significantly improve the trajectory generation
methodology.

6.2 Recommendations

Future efforts should be directed towards enhancing the performance and applicability of the
derived algorithm. Such efforts should include the development of detailed multi-disciplinary
vehicle models, the incorporation of additional controls such as thrust vectoring, reaction jets, and
variable geometry, optimal control of the total heat load on the vehicle, the study of three-
dimensional maneuvers, including abort, an examination of robustness issues, and improvements
in speed of operation.

The demonstrated capability for rapid near-optimal trajectory generation has yet to be exploited
in the development of efficient tools for fully integrated hypersonic vehicle design. Efforts to move
in this direction should include tieing a parameter optimization algorithm around the trajectory
optimization code that has been developed and the incorporation of this algorithm into a fully
integrated control system design methodology.
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Work of more general theoretical interest was also initiated during this reporting period. It was
found that state-variable inequality constrained boundary layer systems are not well understood.
Many of the characteristic features of such systems were identified. For instance, it was found that,
when the reduced solution lies on a state-variable inequality constraint boundary, the boundary
layer trajectories are of finite time in the stretched time scale. The possibility of costate
discontinuites at the juncture between constrained and unconstrained arcs makes direct application
of existing theory difficult. A transformation technique was identified that eliminates some of these
difficulties, but at the cost of possibly increased system order and the introduction of singular arcs.
Further research in this area is recommended.

Continued work with the integrated aerodynamic/propulsion performance prediction program
has resulted in a highly accurate and useful means both for providing the needed vehicle parameters
in the present program and for more general transatmospheric flight performance calculations. The
program is evolving into a completely interactive performance estimation package, which will make
it possible to view effects of small configuration changes on any performance parameters. The
user can view in animated graphical form the effect of desired vehicle configuration changes.
These modifications can be entered graphically by moving defining points on the vehicle outlines
or by means of shifting simulated “levers” built in to the computer program. For example wing
incidence angle, twist, wing area, fin cant angle, etc. can be changed continuously with
simultaneous graphical output showing the effect on selected performance parameters. We
anticipate many applications for this analytical capability and will continue to improve upon it.

6.3 Publications

Four conference papers have now been published which discuss most of the results of this
research effort12:15.1649 A Ph.D. Dissertation that details the entire effort to date was published in
Decemeber of 198919, A full-length paper entitled "Rapid Near-Optimal Trajectory Generation for
Single-Stage-to-Orbit Airbreathing Vehicles” has been submitted for publication in the AIAA
Journal of Guidance, Control and Dynamics and a new paper is now being prepared for the 1990
AIAA GN&C Conference on the issue of state contraints in singularly perturbed systems.
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Appendix A

State Inequality Constrained Boundary Layers

" Abstract

The established necessary conditions for optimality in nonlinear control problems that involve
state-variable inequality constraints are applied to a class of singularly perturbed systems. The
distinguishing feature of this class of systems is a transformation of the state-variable inequality
constraint, present in the full order problem, to a constraint involving states and controls in the
reduced problem. It is of particular interest to construct the zeroth order boundary layer solution
when the reduced solution lies on the constraint boundary. It is shown that, in general, the
boundary layer problem is of finite time in the stretched time variable. A special case is identified
in which the boundary layer time scale transformation results in an increase in state inequality
constraint order. In this case, required smoothness properties possessed by the full order system
may be lost, and the application of existing necessary conditions for singularly perturbed systems
then becomes invalid. A Valentine transformation can be used to regain required smoothness, but
at the price of introducing singular arcs and an increase in system order. Finally, the various
system properties and characteristics described in the body of the appendix are illustrated with
several simple examples.

I. Introduction

State inequality constraints are commonly encountered in the study of dynamical systems. The
study of rigid body aircraft dynamics and control is certainly no exception. For instance, a
maximum allowable value of dynamic pressure is usually prescribed for aircraft with supersonic
capability. This limit is required to ensure that the vehicle's structural integrity is maintained and
constitutes an inequality constraint on vehicle state. State inequality constraints have been studied
extensively by researchers in the field of optimal control, and necessary conditions for optimality
when functions of state are constrained have been obtained!-3. However, the construction of
solutions via this set of conditions proves very difficult, and most practitioners rely on direct
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approaches to optimization that employ penalty functions for satisfaction of state inequality
constraints®.

As discussed in the literature, the use of singular perturbation techniques in the study of aircraft
trajectory optimization can, through order reduction, lead to both open and closed loop solutions
that are computationally efficient. These methods can also be used to circumvent difficulties
associated with enforcing a state inequality constraint in the reduced solution’. As an example
consider the minimum time intercept problem of®. A near optimal feedback solution is obtained via
singular perturbation theory that includes consideration of aninequality constraint on dynamic
pressure. In the zeroth-order reduced solution, algebraic constraints are obtained when the
perturbation parameter, €, which premultiplies the so called "fast" dynamic equations, is set to
zero. These constraints can be used to eliminate the fast states (in this case altitude and flight path
angle) from the reduced problem. One can choose, however, to retain one or more of the fast states
and to eliminate instead some of the original control variables. The retained fast state variables are
treated as new controls, and the original state constraint becomes a constraint involving both state
and control in the reduced problem. In subsequent analysis of boundary layers, altitude resumes
its status as a state variable, and dynamic pressure once again becomes a function of state alone.
However, ‘because the reduced solution for the example F-8 aircraft does not lie on the dynamic
constraint boundary during ascent, the inequality constraint on dynamic pressure was not
considered. Of note is the fact that modern supersonic fighter aircraft (such as the F-15) do ride the
dynamic pressure constraint boundary during the ascent leg of the minimum time to intercept path.

In addition to the example cited above, dynamic pressufe bounds are encountered during fuel-
optimal climb for supersonic transports’ for rocket powered launch vehicles such as the U.S.
space shuttled , and for single-stage-to-orbit air-breathing launch vehicles®. If, as in applying
singular perturbation methods in seeking a solution to any of these problems, the reduced solution
climb path lies directly on the dynamic pressure constraint boundary for a portion of the flight,
then it is necessary to consider boundary layer transitions onto the constrained arc. This problem,
which proves quite perplexing, has received almost no attention in the literature.

This appendix documents an initial investigation of the features of boundary layer transitions to
state constrained arcs. Section II provides a brief review of first order necessary conditions derived
for state-variable inequality constrained problems in optimal control. Section III discusses the
optimal control of singularly perturbed systems subject to'state-variable inequality constraints in
general, and in particular examines the features of state inequality constrained boundary layers
when the reduced solution lies on the constraint boundary. Section IV provides several simple
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examples which illustrate the problem features discussed in earlier sections. Secfion_ V completes
the appendix by providing some concluding remarks.

II. Constrained Problems in Optimal Control

The introduction of a state inequality constraint of the form

S(x,t) <0 » (A.1)

~
can lead to considerable difficulty when attempting to obtain an optimal control solution. One
approach to incorporating state inequality constraints into necessary conditions for optimality
consists of constructing successive total time derivatives of S until explicit dependence on the
control appears!l. If p time derivatives are required then (1) is referred to as a p'' order state
variable inequality constraint. The function SP(z,u,t)=0 is then adjoined to the Hamiltonian as a
constraint to be enforced when S=0. This approach introduces the following additional tangency
conditions at the point of entry to a constrained arc

S(z,t)

slzp)

N(z,t) = =0 (A.2)

P

-1
S (z,t)

These same tangency conditions also apply at a point where the path leaves the constraint
boundary. The equations (2) constitute a set of interior boundary conditions that must be met at
each juncture between a constrained and unconstrained arc. Unfortunately, in order to satisfy these
interior boundary conditions one must allow for the possibility of discontinuities in the costate
variables at the junctures. An alternative set of necessary conditions can be obtained by adjoining
the constraint function, rather than its pth derivative, to the Hamiltonian and then employing a
separating hyperplane theorem?22. These conditions prove simpler and "sharper” than those of
reference 11 however the possibility of discontinuous costates is still present. The gap between
the necessary conditions of references 11 and 22 is defined in reference 23. A third alternative
involves enploying a transformation technique in which a slack va1>'4i_ab1eris used to transform the
state inequality constrained problem into an unconstrained brolplefn of higher dimension3%:31, The
“work associated with the derivation of these first order necessary conditions is detailed in
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references 32-38. Second order necessary conditions for optimality in the 'presence of state
constraints have also been derived3? as have conditions for various special cases*?. Work
continues in the area of state constrained optimization as evidenced by the approach of Lowen®1.

III. Optimization of Singularly Perturbed Systems
Subject to State Inequality Constraints

Consider the system of singularly perturbed nonlinear differential équations:
dx/dt = f(x,y,u,t) (A.3)

€ dy/dt = g(x,y,u,t) (A.4)

with an index of performance of the form

T=9[z(ty)t] +I:L[z(t), u(t), t]dt (A.5)

where x and f are of dimension n, y and g are of dimension m, x(to) and y(t,) are given, € is a
small parameter, to <t < tf, and the control u(t) is of dimension p. Zero order necessary conditions
for optimality of the associated reduced and boundary layer problems in the absence of state
constraints are readily available#2. However, the following restrictions apply: f, g, of/dx, of/dy,
0g/ox, and dg/dy must be continuous and u must be piecewise continuous. Because of these
restrictions on smoothness a direct extension of the necessary conditions of for state constrained
problems to include singularly perturbed systems is not possible. This is due to the previously
mentioned fact that discontinuities in the costates can occur at the junctures between constrained
and unconstrained arcs. Alternately, the state inequality constrained singularly perturbed problem
of interest can be converted into an unconstrained singularly perturbed problem of higher
dimension by introduction of a slack variable30. This approach does eliminate the problem of
discontinuous costates. However, the state constrained arc is replaced by a singular arc and the
prospect of increased system dimension is unwelcome given the basic tenet of seeking order
reduction.

Consider the flight dynamics problem detailed in the main body of this report. An inequality
constraint on dynamic pressure of the form ’
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Sh,V)=q—Qunax <0 (A.6)

is to be enforced where
q= sz/Z (A7

The symbol p represents atmospheric density and V represents the flight velocity. Given the
equations of motion (1-4) expressed in the main body of this report, the first time derivative of
(A.6) can be expressed as,

dS/dt = dg/dt = [V3@p/ar)/2 — puV/?] siny + pV(T — D)/m (A.8)

Recall tha_tt the symbol T represents thrust, D, aerodynamic drag, m, vehicle mass, T, radial
distance from the center of the Earth, v, flight path angle, and p, the gravitational constant for the

Earth. Assume, as is typically done, that atmospheric drag can be represented as follows,
D = qsCp, + KL%/gs (A.9)

where s represents an aerodynamic reference area, Cp,,the zero lift drag coefficient, and K, the
coefficient of the induced drag component. Note that the drag is explicitly dependent on the lift, L,
which is treated as a control. In addition, the relation for thrust, T, is usually explicitly dependent
on the engine throttle control. These controls appear explicitly in the first time derivative of the
constraint function, (A.8), and it is thus classified as a first order state inequality constraint (i.e. p
= 1). It is shown in reference 22 that when the constraint function is adjoined directly to the
Hamiltonian and p = 1, no jumps in the costates will occur at the entry of an unconstrained arc onto
a constrained arc. In this case the smoothness properties required by general singular perturbation
theory are not violated and we may proceed with the application of singular perturbation methods
with confidence.

The state inequality constraint on dynamic pressure is conveniently reduced to a state and

control constraint function in construction of the reduced solution (i.e p becomes zero). This
occurs because altitude, a state variable in the full order problem, becomes a control variable in the
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reduced solution. Enforcing this state/control constraint in the reduced solution is a trivial matter.
Now consider the construction of the zeroth order initial boundary layer. Assuming that energy is
characterized as a slow state, application of the time stretching transformation 1 = t/€ and again
setting € to zero yields an energy rate of zero. As such, the last term in (A.8) is no longer present.

Instead, the first time derivative of the constraint function is given by,
dS/dt = dg/dt = [V3(9p/0r)/2 — puV/r2] siny (A.10)

With the last term of (A.8) absent, control dependence does not explicitly appear in (A.10). That
is, the classification of the constraint function is altered following the time scale transformation
when € is set to zero. Taking the time T derivative of (A.10), (i.e. forming the 2nd time T derivative

of S), yields a term containing the time derivative of the flight path angle, Y. The expression for

flight path angle rate is as follows,

,_ L _ucosy+Vcosy

‘Y =
mVy Vr2 T

(A.11)

which is explicitly dependent on the lift control. Thus, in the boundary layer, the inequality
constraint on dynamic pressure is 2nd order. Unfortunately, there is no guarantee that the costates
are continuous for this case as there was for the case p = 1. Note that this type of behavior, in
which the inequality constraint function order varies, is not present in all singularly perturbed
problems with state inequality constraints, just for a certain class of them. For instance, if the
constraint function is dependent on fast states alone, this variation does not occur. '

If jumps in the costates are in fact present at the juncture between an unconstrained and a
constrained arc, the smoothness properties required are violated and the available necessary
conditions for optimal control of a singularly perturbed system cannot be applied directly. In some
cases it is not possible for the boundary layer dynamic system to "ride" the constraint boundary
before reaching the reduced solution. In such case the boundary layer costates can, at most, be
discontinuous at the juncture between the initial boundary layer and the reduced solution and only
if the reduced solution at that point is on the constraint boundary. It is also possible that no such
jumps will occur. -

If we proceed assuming that such jumps do not occur, then in most cases of interest the
functional form of the boundary layer control solution in the presence of a state-variable inequality
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constraint can be obtained. If this functional form involves an unknown costate, then use of the
derived control solution is prevented unless the associated two point boundary value problem
(TPBVP) is solved. To avoid solution of the TPBVP, as is desired in seeking a solution suitable
for on-board, real-time implementation, an approximation for the unknown costate can be formed.
If the costate history is continuous, the linearization technique of reference 43 can be applied to
form the estimate. Unfortunately, for the case described above in which the reduced solution lies
on the constraint boundary and the inequality constraint order is elevated to 2 by the boundary layer
time scale transformation, purely imaginary roots result when the linearization technique is applied.
Thus it is not possible to find a stablizing costate approximation given arbitrary initial states. In an
unconstrained problem, the lack of an appropriate eigen-structure indicates that the problem does
not exhibit the time scale properties assumed. Boundary layer transients do not exist for such
cases; in fact there are fast oscillations that do not die out. The addition of an artificial cost term in
formulation of the problem is suggested as an ad-hoc way to circumvent this difficulty. By proper
choice of the weighting on can guarantee the proper structure of the linearized boundary layer
system®4,

An interesting feature of the constrained boundary layer system described above is the presence
of a finite costate rate at the juncture with the reduced solution. This behavior is illustrated in the
sketch presented as Figure 1. In the figure, t; denotes the time at which an unconstrained arc joins
a constrained arc (i.e. a juncture point).
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Figure 1 Tllustration of finite costate rate at juncture between boundary layer and reduced

solution trajectories.

Identification of the behavior illustrated in Figure 1 is based on the following construction.

BHBL BHBL BH al.l,'I l
= + —H — = A (A.12)
dy dy u 9y
u=u* u = constant
§<0 §<0

Note that, since the last term in (A.12) is zero, this relation is equal to the negative of the costate
rate. The following relation can also be constructed.
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oH oH N
2L =—2 ] 4 A= (A.13)
dy dy dy
u=u* } u=u*
S<0 unconstrained
Now as T tends to t;~ we find that,
As=0fort<t
' oH aS
A, () = —2& + M| = (A.14)
ay dy
u = constant " 0
unconstrained

0

\'"_N_u \w‘)
=—As, 9S/dy | at t;% this becomes Ag_
0

Thus the fast costate rate, ly', has a finite value at t;~ and then jumps to zero at t;*. The boundary
layer system no longer approaches the reduced solution asymptotically as in the unconstrained
case. Instead, a finite time boundary layer is implied. Similar finite time boundary layer
phenomenon have been discovered by the investigators of interior boundary layers and boundary
layers that approach singular arcs#346. Using this terminal value for the costate rate it is possible
to show analytically for problems of interest that the linearized boundary layer system will always
have purely imaginary roots when the reduced solution lies on the state-variable inequality
constraint boundary.

Consider the possibility of integrating the boundary system backwards in time from the reduced
solution using the finite terminal value of costate rate to get started. Note that only a single extremal
will be generated unless an additional free parameter is introduced into the problem. Since it should
be possible to reach any set of initial conditions that do not violate the constraint, such a parameter
surely exists. The only available parameter appears to be the magnitude of the possible costate
jump at the juncture. This would imply that the costate history will»bé_discqntinuous at the juncture
for all initial conditions that do not lie on the single extremal generated when it is assumed no jump
occurs.



Assuming that first order necessary conditions for optimality can be obtained for which the
requirement for smoothness can be relaxed (see for instance reference 47), one would again
require a scheme for obtaining a stabilizing estimate of the unknown costates that appear in the
optimal control law. However, to the author's knowledge, no directly applicable stability theory
for finite time phenomenon is available for completing this task#®. Alternately, one can consider
transforming the constrained problem into an unconstrained problem, generally of higher order.
The optimal trajectory of the transformed problem exhibits singular arcs which correspond, in the
original constrained problem, to arcs which lie on the constraint boundary30. Because of this, the
technique for costate approximation using the linearized boundary layer system, will fail. The
reader is referred to the literature for a description of the work that has been done with regard to
understanding control of singularly perturbed systems that include singular arcs?*6.

IV. Examples

Several simple examples are now presented which illustrates the application of the Valentine
transformation technique described in reference 46 without the penalty of increased system
order3l. The phenomena of a finite time boundary layer is illustrated in example 2.

Example 1

Consider the folloWing singularly perturbed dynamical system with initial conditions at zero.

X;=Xp-u x1(0) = 0 (A.15)
£Xp = X3 x2(0) = 0 (A.16)
EX3=1 x3(0) =0 (A.17)

The following 2™ order (i.e. p = 2) state inequality constraint is to be enforced,

S=x2—150 - (A.18)

The final value of x ) is specified, the final time is free, and the performance index is given by,
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Y

J=1 a& (A.19)

]

Using Valentine's device, the inequality constraint (A.18) is converted into an equality by the
introduction of a "slack variable," 030,

S+a?2=0 | ‘ (A.20)

Differentiating (A.18) p times (p = 2) with respect to time, the following set of equations is
obtained,

x3/€ + aoy/e =0 where € do/dt = o (A.21)
u/e? + 0y2/e? + ao/e2 =0 where € day/dt =0 (A.22)

Using the &ansfonnaﬁons x2 = 1 — 02/2, x3 = 00ty, and u = —01y2 — Ay, (A.15-17) become,

2 2
. 2
x;=1- 92—- - (a1+aa2) (A.23)
€0 =01, (A.24)
EQ; =0, (A.25)

Reduced solution. By setting € to zero, (A.24) and (A.25) are reduced to the following,

' a,=0 (A.26)

a,=0 (A.27)

The reduced solution Hamiltonian is given by,
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2 2
o 2
H=lx[1 -5 - (a1+aa2):l + Ao + 7‘a1°‘2 +1=0 (A.28)
Evaluation of first order necessary conditions for optimality results in the following,
o o]
H=0 &Hy=0 = A, =-1, a =0 ‘ (A.29)
. :
Hy =0 = Ay, = -1 (A.30)
o]
, (A.31)

i
o
>
2
il
[
[RsN

H,

2

Boundary Layer Problem. Introducing the time scale transformation T = t/€ and again setting €

to zero, the boundary layer dynamics are given by

=0, (A.32)

a, =0, (A.33)

where the prime notation denotes differentiation with respect to the stretched time t. The boundary

layer Hamiltonian is given by,

2 2
o 2
Hp = 5 (a1+aa2} + A0 + A 0,=0 (A.34)
The costate dynamics are given by
' 2
Ag=—0 — 20, + oo, fe, : (A.35)
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' 2
And when the constraint is inactive, the control, o, is determined by the necessary condition,

2
JoH 2
BL 2(a1+aa2) o+ kal= 0 (A.37)

dJa,

Note that when the constraint is active, o is zero and the condition (A.37) yields no direct control

solution. Riding the constraint boundary corresponds to a singular arc in the transformed problem.

Example 2

Consider a simplification of Example 1, namely the singularly perturbed dynamical system,
X{=Xq-U (A.38)
EXg= u (A.39)
The inequality constraint (A.18) becomes a 15 order (i.e. p = 1) state inequality constraint,

S =X, 1<0 (A.40)

The final value of X, is again specified, the final time is free, and the performance index is again
given by,

J =fo dt (A.41)

Using Valentine's device, the inequality constraint (A.40) is converted into an equality by the
introduction of a "slack variable," 30,

S+a22=0 | (A42)
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Differentiating (A.42) p times (p = 1) with respect to time, thev following equation is obtained,

we+ oo /e=0 where € do/dt = o (A.43)
Using the transformations x; =1 — 02/2 and u = — 0o, (A.38-39) become,
2 2
. [0 4
x=1- 5 - (aa) (A.44)
E0L =0 (A.45)
Reduced solution. By setting € to zero, (A.45) is reduced to the following,
[}
a,=0 (A.46)
The reduced solution Hamiltonian is given by,
2
o 2
H=7‘x1[1 -5 - (aal)] +A 0, +1 =0 (A.47)
Evaluation of first order necessary conditions for optimality results in the following,
o] o]
H=0 &H,=0 = A, =-1, a =0 (A.48)
o
He,=0 = A,=0 (A.49)
from which it is evident that )
(A.50)

I
-

x1(0)
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X3 = 1 | (A.51)

Boundary Layer Problem. Introducing the time scale transformation T = t/e and again setting €
to zero, the boundary layer dynamics are given by

where the prime notation denotes differentiation with respect to the stretched time . The boundary
layer Hamiltonian is given by,

oc2 2
Hp = — + (o)) + Aga; = 0 (A.53)
The costate dynamics are given by
L} 2 »
A,=—a (1 + 20, . (A.54)

The condition that the partial derivative of the Hamiltonian with respect to the control be zero yields
the following result,

Hy, =0 = a, =-— (A.55)

1

Substituting this result back into the condition that the Hamiltonian be zero, the following result is
obtained.

2
H=0 = A,=%V2a (A.56)

Substituting (64) into (63) we find that the optimal value of the control, oy, is constant; namely,

o= * ﬁ : (A.57)
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With this result it is possible to integrate cquatidn (A.52) to obtain,

T

at)=v2 * 5

(A.58)

When the boundary layer trajectory reaches the constraint boundary (i.e. x; = 1), o = 0 and the
expression (A.58) yields a finite final time of 2 units of boundary layer time. Transforming back,
we obtain an expression for u in terms of X3,

u=v1 - x, (A.59)

where integration of the original differential equation (A.39) yields,

2

x,=1 - (1 - %) (A.58)

V. Conclusions

In conclusion, state-variable inequality constrained singularly perturbed problems can exhibit
complex boundary layer phenomenon that are not well understood. The order of the state constraint
can increase when going from the full order problem to a boundary layer analysis. Because
discontinuous costate histories can be introduced by the presence of state inequality constraints, a
direct application of available singular perturbation theory, which requires the state and costate
histories to be smooth, is not possible. The boundary layer phenomenon associated with such
problems appear to be finite time. A stability theory for finite time phenomenon, as required to
construct a suitable approximation for costates appearing in derived feedback control laws, is not
available at this time. Valentine's transformation can be used to overcome some of these
difficulties, but at the expense of introducing singular arcs and possibly increased system order.
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Appendix B

Permormance Modeling of Hypersonic Vehicles

I. Introduction

In order to carry out useful performance studies, trajectory optimization and guidance law
development for hypersonic transatmospheric vehicles, it is necessary to utilize an accurate
model of the aerodynamics and propulsion system characteristics. Since actual vehicle design
is not involved, it is appropriate to utilize simplified models if they can be made to properly
reflect the actual vehicle performance characteristics. It is also of great benefit to have
available models that can be used interactively to study the impact of small changes in vehicle
configuration or propulsion system design.

In what follows is described a set of simple algorithms devised for use in the present
research program for the purposes outlined. The computer codes have evolved continuously
throughout the study. The result is an integrated hypersonic vehicle performance package that
has many applications beyond those originally envisioned.

II. Hypersonic Aerodynamic Performance Modeling

Simple hypersonic aerodynamic theory enables construction of practical and highly accu-
rate representations of the performance characteristics of realistic hypersonic flight vehicles.
In this section we review the basic theoretical approach and the implementation of this theory
in the form of interactive computer software. The basic approach was to make the application
of the model to a particular airframe conceptual design as simple as possible. Because of the
interactive nature of the algorithms used, effects of even minor design modifications can be
immediately assessed in terms of sensitivity parameters such as L/D ratio, overall vehicle drag
coefficient, and trim moments.

The models developed have applications that range considerably beyond the ones ad-
dressed in this report. For example, they are a sufficiently accurate representation of the
vehicle performance to allow assessment of off-design flight conditions as well as approximate
stability and control studies. Although the emphasis in the following discussion is on the high-
Mach number performance modeling, the computer program under development is being set
up to cover the entire Mach number range from low subsonic to hypersonic speeds. The low
speed aerodynamic performance models used are not as accurate as those in the hypersonic
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range, but are sufficiently precise for use in simple performance modeling in which low speed
flight affects such as the landing or takeoff flight phases are to be included.

In what follows is given a brief description of the operation of the computer program and
the basic theory on which it is based. The methods used in applying the theory to a given
vehicle configuration is reviewed for the benefit of readers unfamiliar with hypersonic aerody-
namic modeling.

User Interface

The computer algorithms were designed to make their application to a given vehicle con-
figuration as simple as possible. At present, limited access to actual flight vehicle configura-
tions makes it necessary to work from rather sparse data sets. For example, the vehicle to be
studied may be defined only by a simple three-view drawing. We have deliberately set out to
make it possible to work effectively from such data. The configuration is entered into the
program in a variety of ways. The simplest method allows input in the form of outlines of the
wing planform, fuselage elevation and planform, body cross-section shapes, and tail surface
configuration in the form of discrete points. It is not necessary that a large number of outline
points be used. For example fuselage outline data can consist of as few as ten points in
elevation and planform with acceptable accuracy. The program allows for variation in
fuselage cross-section station by station along the axis of symmetry. It also allows for corners
in the cross-section as often chosen in hypersonic vehicle layouts.

The configuration data can also be entered by scanning a three-view of the vehicle. Scaling
is accomplished by selecting points at the nose and tail of the planform. The user then selects
points interactively by means of a mouse or graphics table. Modifications in geometry can be
directly implemented in the input process by altering position of control points. Wing and tail
incidence, fin cant, control surface deflection , and other required information are entered in an
interactive tabular input window. If insufficient data has been entered to properly define the
complete configuration, the program warns the operator and indicates what additional informa-
tion must be specified.

Interactive Program Mode

The computer program has been designed to take full advantage of modern computer
graphical interface technology. Once a vehicle configuration has been implemented as
described earlier, its attributes can be saved and modified later. At the discretion of the user,
one or more attributes of the vehicle aerodynamic performance characteristics can be displayed
simultaneously with the configuration input panel. For example, the lift coefficient vs angle of
attack, lift/drag ratio, pitching moment vs lift coefficient or other information can be viewed at
the same time changes in vehicle geometry such as wing area, incidence angle, airfoil shape, or
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body cross-section shape are being input. This makes it very easy to determine the impact of
design changes in a direct and graphically useful manner. When the program is linked to one
of the postprocessing packages such as the one describing trajectory optimization discussed
elsewhere in the report, it is possible to view effects of configuration modifications directly in
terms of their impact on selected performance parameters.

Local Surface Inclination Theory with Blast Wave Corrections

Several decades of experience have shown that the simplest form of hypersonic flow field
modeling yields a practical and accurate means for estimating vehicle performance. The
Newtonian flow model gives an excellent representation for the pressure changes on the
vehicle surfaces directly in terms of the inclination of the local surface to the freestream flow.
Various modifications can also be applied to correct the pressure distribution for effects of
strong shock formations at the leading edges of lifting surfaces and tail surfaces and on the
nose of thefuselage. The blast wave theory is employed for this purpose.

Simple Newtonian impact theory shows that the pressure coefficient at any point on the
windward vehicle surface is given by

Cp= 25in%0 (B.1)

Thus all that is necessary to apply it to a three dimensional vehicle is to set up an algorithm that
utilizes geometry information to determine whether a given element of the surface is on the
windward side and to calculate the angle between the freestream velocity vector and the
surface element. Samples of the computational method used in this program are discussed
briefly in the following subsections.

Hypersonic Thin Airfoil Theory

In some situations, it is sufficiently accurate to represent hypersonic lifting surfaces as flat
plates. However, in practical situations the need for adequate low-speed aerodynamic charac-
teristics and surface structure dictates that a cambered airfoil of reasonable thickness be used.
For example, the NASA vehicle designs used in our computations typically employed airfoils
of of between 5 and 10% maximum thickness ratio. Thus it is useful to provide means for
correcting the force calculations for camber and thickness effects. Figure B.1 defines the
required geometry for a typical wing section.

On the windward side of the airfoil, the camber/thickness function is conveniently de-
scribed as a functional relationship _ ] ,
y¢ = F(x) (B.2)



Figure B.1. Hypersonic Airfoil

This can be input in the computer program as a series of points taken from a scan of the airfoil
or by inputing in tabular form. The program also allows the specification of the airfoil profile
directly in analytical form. The program logic then determines the required calculation module
from which to compute the wing characteristics. The program also contains provision for
accounting for wing twist, although none of the vehicle models studied have employed twist.
The local value of the pressure coefficient becomes

.2 dF
Cp = 2sin (a +1- a;) (B3)

where o is the vehicle angle of attack measured between the fuselage reference plane (See
Figure B.2), 1 is the incidence angle between the wing chord line and the fuselage reference
plane, and F is the airfoil envelope shape function as described above. This information is then
used as the basis for determining the normal force coefficient for the airfoil. The resultis

C b ..
Cp = %Josinz(a +1 —%) dx (B.4)
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Figure B.2. Definition of Fuselage Reference Plane
and from this we find the section lift and drag coefficients.
C
cr= 2°°s°‘J sin2(a+1—iF-)dx (B.5)
c Jo0 dx
2sina J‘c . 2( dF )
C4= sin“| o +1——|dx
d c J0 dx (B.6)

These coefficients are then used with the wing planform information giving the local values of
chord length and incidence (for a twisted wing) to determine the force on the local wing
section. The results for the entire wing are then accumulated. The program has provision for
displaying the total lift and drag coefficients and the center of pressure location for the three-
dimensional wing. It also determines contributions to the pitch, yaw, and roll moment
coefficients.

Aileron, elevon or flaperon deflection effects are also computed. The user must input the
desired control surface deflections. Differential elevon deflections are allowed. The program
senses when the critical surface deflection angle (at which the freestream flow no longer
impinges on the deflected surface) has been exceeded and properly adjusts the force system.
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Hypersonic Lifting Body Theory

The integrated fuselage/propulsion system provides most of the lift of a typical hypersonic
aircraft. Since the shapes may be somewhat complex, it is necessary to provide for an adequate
geometrical representation. Figure B.2 shows the coordinate system used and defines the
vehicle reference plane. This plane typically coincides with the body centerline as seen in the
elevation drawing, but the program allows for arbitrary specification of this plane. For
convenience, the origin of the coordinate system is located at the vehicle nose. The x-axis lies
along the reference plane in the (assumed) normal plane of symmetry. The y-axis points to the
left and the z-axis points downward.

Figure B.3 shows how the various profile curves defining the body shape are represented in the
program. These curves may be determined by curve fitting of three-view drawings or may be
input into the program as a table of points. It is not necessary to utilize a large number of
points. Ten points per profile curve usually provide adequate accuracy unless the body shapes
are exceptionally complex.

As shown in Figure B.3, the body cross-section profiles are not required to be continuous
curves. Corners are allowed as represented by the break points shown in the drawings. The
fuselage shape is specified in functional form as

z=f(y) Cross Section Shape
y = g(x) Planform Shape (B.7)
z = h(x) Fuselage Elevation

These functions are determined in the program from the input coordinate points and are used to
compute the unit vector normal to a point on the windward surface. The result is

n = sin ¢;i +sin ¢, + (cosd;cos o, )k (B.8)
where
—1f dh
¢1=tan 1(5) (B.9)
T
by = tan (dy] (B.10)

An area element of the body surface at the same location can be written as

A

" cos ¢; cosd, (B. 1'1)
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The projected width of the element in the reference plane is A as shown in Figure B.3. The
inclination angle between the freestream velocity vector and the surface element is given by

o Ul ) T (B.12)
VY =cos (U,,, ] 2

where the velocity vector is specified in body coordinates as
U.. = U[(cosP cosc)i — (sinB)j— (cosp sin k] (B.13)

The local pressure coefficient is
=7 <in2
Cp=2siny] | (B.14)

The dimensionless normal force vector on the surface element is, in vector form

dF = -2 sin?[y] dS n (B.15)

Integration of this function across the width of the body gives the force vector on an axial
element of the vehicle. The program then sums all contributions axially to determine the lift,
drag, sideforce, and moment coefficients for the complete assembly.

The more detailed representation of the body geometry used in the present version of the
program greatly improves the agreement between the predicted and measured aerodynamic
performance. Earlier problems with the vehicle lift curve slope at zero angle of attack have
been eliminated because the effects of body curvature and surface orientation are now properly
accommodated in the calculations.

II1. Scramjet Propulsion Model
Although the supersonic combustion ramjet concept has been known for over two decades,
the lack of appropriate unclassified experimental data, cycle analyses, and combustion analy-
ses requires that we use a simple conceptual model for the purposes of vehicle trajectory opti-
mization. In what follows is a brief description of this model and-the philosophy behind it.
Conceptually, the SCRAMIET is as simple an airbreathing combustion device as one

could imagine. In the case of the new family of flight vehicles to use this propulsion concept,
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the entire underside of the vehicle plays a role in the operation of the system. Figure 1 shows
the basic configuration. Mechanically, the device can be thought of in terms of three elements.
These are

1. Diffuser
2. Combustor
3. Expansion nozzle

Hypersonic vehicle designers attempt to utilize the forward fuselage, strakes, and wings to
provide the majority of the diffusion. The lower part of the three-dimensional oblique shock
formed at the leading edges is tailored to the shape of the combustor inlet so that air enters at
approximately a Mach number of the order of 3 depending on the flight speed. Combustion of
hydrogen fuel takes place in the duct at supersonic speeds in order to minimize energy losses
due to dissociation, which would be enormous if the more conventional subsonic ramjet cycle
were to be used in high speed flight. Liquid hydrogen is the fuel of choice not only because of
its high energy content, but because it can be made to burn in a supersonic flow due to its wide
flammability limits and high flame speed. Finally, the combustion products are expanded
through a nozzle, which, like the diffuser is designed into the contour of the lower fuselage.

The propulsion system is mostly diffuser and nozzle. While these elements are fairly easy
to model from the thermodynamic cycle point of view, the aerodynamics are quite complex,
giving rise to a challenging design problem. Computational fluid dynamics (CFD) numerical
techniques are being relied upon in conjunction with a new family of hypersonic test facilities
to yield practical design solutions. Unfortunately, information on the current research is
classified, so that realistic design data is not available for projects of the type reported here.

The computational model used here to represent the SCRAMIET propulsion system was
deliberately designed to be readily updated as new information becomes available. It directly
accesses a standard atmosphere model (also easily adjustable to provide non-standard operat-
ing conditions), which simplifies its incorporation into a trajectory optimization program. The
diffuser and nozzle performance is determined either with standard thermodynamic models or
by means of optimal design curve fits such as those proposed by Billig. Since information
conceming recent progress in supersonic combustion was not available, a simple combustor
model was incorporated. This is a straightforward Rayleigh line calculation. An iterative
scheme is used to determine the nozzle entrance Mach number, by maintaining the mixture
ratio at or below the stoichiometric value. No detailed combustion calculations with multi-
species gases is attempted in the present version of the model although these could be readily
incorporated as a more definitive model of practical: SCRAMIJET combustion comes into
focus.



The propulsive drag estimate of Billig was incorporated to account in a simple way for
some of the frictional losses. No attempt was made to incorporate vehicle integration effects in
an interactive fashion. Experience with the aerodynamic simulation shows that very small
vehicle attitude changes take place during equilibrium flight. Therefore in the present state of
development, no vehicle attitude dependence has been included in the propulsion model. The
flexibility of the algorithm will make-such additions quite easy to incorporate as the need for
them is established.

References

B.1. Billig, F. S., “Design Considerations of Supersonic Combustion Ramjets,” AIAA-86-
0159, ATAA 24th Aerospace Science Meeting, Jan 6-9, 1986.

B.2. Northam, G. B. and G. Y. Anderson, “Supersonic Combustion Ramjet Research at
Langley,” AIAA-86-0159, AIAA 24th Aerospace Science Meeting, Jan 6-9, 1986.

B.3. Avery, W. H. and Dugger, G. L., “Hypersonic Airbreathing Propulsion,” Astronautics
and Space Engineering, June 1964, pp 42-47.

61



